
The 12th European Simulation Multiconference, ESM'98, June 16--19, 1998, Manchester, UK

EVOLUTION OF CONTINUOUS-TIME MODELING AND SIMULATION

Karl Johan Åström

Department of Automatic Control
Lund Institute of Technology

Box 118, SE-221 00 Lund, Sweden
E-mail: kja@control.LTH.se

Hilding Elmqvist

Dynasim AB
Research Park Ideon

SE-223 70 Lund, Sweden
E-mail: Elmqvist@Dynasim.se

Sven Erik Mattsson

Department of Automatic Control
Lund Institute of Technology

Box 118, SE-221 00 Lund, Sweden
E-mail: SvenErik@control.LTH.se

KEYWORDS

History, simulation, modeling, differential equations,
differential-algebraic equations, object-orientation

ABSTRACT

Modeling and simulation have experienced an amazing
development since its beginning in the 1920s. At that
time, the technology was available only at a handful
of university groups. Today it is available on the desk
of all engineer who needs it. The paper presents the
current status of modeling and simulation. It draws
on the historical perspective to explain how the field
has developed. Particular emphasis is given to shifts in
technology and paradigms.

INTRODUCTION

Modeling and simulation are indispensable when deal-
ing with complex engineering systems. It makes it possi-
ble to do essential assessment before systems are built,
it can alleviate the need for expensive experiments and
it can provide support in all stages of a project from con-
ceptual design, through commissioning and operations.
The following quote from one of the early pioneers Prof.
Vannevar Bush, who worked on problems in power sys-
tems, is still highly relevant:

“Engineering can proceed no faster than
the mathematical analysis on which it is
based. Formal mathematics is frequently in-
adequate for numerous problems pressing
for solution, and in the absence of radically
new mathematics, a mechanical solution of-
fers the most promising and powerful attack
wherever a solution in graphical form is ad-
equate for the purpose. This is usually the
case in engineering problems.”

Technology has naturally been an important factor
in the development of simulation. Analog techniques
were predominant from 1920 to 1950. Major changes
took place when digital computers were available and
simulation techniques have then exploited the advances
in digital computers and software techniques such as
computer graphics.

There is a large literature on simulation in wide range of
engineering journals. Early developments are described

in Brennan and Linebarger (1964) and Tiechroew
et al. (1967). More recent overviews found in the
books Kreutzer (1986), Kheir (1988), Cellier (1991) and
Linkens (1993) and the survey papers Otter and Cel-
lier (1995), Cellier et al. (1995) and Marquardt (1996).
Lists of software are published yearly by the Society for
Computer Simulation.

In this paper we will essentially follow the historical de-
velopment. We will start with analog techniques which
were based on ordinary differential equations and block
diagrams. A family of digital simulators which have in-
herited many of the properties of analog computing are
then treated. The advantages and the limitations of the
analog heritage are discussed. Domain oriented special
purpose simulators are then described. This is a nat-
ural way to discuss issues such as efficiency and user
friendlyness. Then we will discuss a new generation of
simulators which are based on object oriented modeling.
They cover multiple domains and permit multiple views
of the system. They also have efficient ways to deal with
decomposition and aggregation.

ANALOG SIMULATION

The first simulators were analog. The idea is to model a
system in terms of ordinary differential equations and
then make a physical device that obeys the equations.
The physical system is initialized with proper initial
values and its development over time then mimics the
differential equation.

Simulation of an ordinary differential equation (ODE)
dx
dt
� f (t, x) (1)

can be accomplished by integrators and function gen-
eration. It was actually shown by Kolmogorov (1957)
that continuous functions of several variables could be
approximated by combinations of scalar products and
generation of scalar functions. This idea was used for
function generation in early analog simulation although
it was not known at the time that the method was gen-
erally applicable.

The mechanical differential analyzer developed by Van-
nevar Bush at MIT was the first general purpose tool
to simulate dynamical systems [Bush (1931)]. Variables
were represented by angles. Integration was performed
by the ball and disc integrator, which had been used

1

motor
controller

PI
n=100

Jl=10

wl

wr

Figure 1 Schematic picture of a motor drive.

V
s

emf

La=0.05

Ra=0.5

Jm=1.0E-3

Figure 2 A motor model.

in planimeters for a long time. Function generation
was made by gear boxes and cams. Torque amplifiers
were used for amplification. A major shift in technol-
ogy occured with the publication of the paper Ragazzini
et al. (1947), which demonstrated that that simulation
could be done electronically. Variables were represented
as voltages in the electronic simulators. This made it
easy to plot variables and to set up a problem. It also
paved the way for industrial production and wide spread
use of analog computing, see Paynter (1989). Compa-
nies that produced electronic simulators also emerged
e.g. Philbrick, Applied Dynamics and Electronic Asso-
ciates were some of the major actors. Aerospace compa-
nies were major customers. A good overview of analog
techniques is given in Jackson (1960).

How to Perform Analog Simulation
In analog computing, a differential equation (1) must
be represented in terms of the fundamental operations,
integration, addition, multiplication, and function gen-
eration. Since the analog computer has limited range
and resolution the variables must be scaled. Scaling is
tedious but it also gives useful insight into the struc-
ture of the problem, see Canon (1973). It is also nec-
essary make the interconnections required to represent
the function f (t, x) in (1). In electronic analog comput-
ers the interconnections were made by patching cables
in a board and parameters were set with potentiome-
ters. The whole procedure of setting up a problem was
tedious. Execution was fast but precision was limited.
The analog computers were highly interactive, because
parameters could be changed during the operation.

An Example

A simple example will be used for illustration through-
out the paper. The system, which is shown in Fig. 1–2,
is a motor drive with an electric motor, a gearbox, a load
and a controller. Equations are given in Appendix A.

To make an analog simulation of the motor drive the
equations have to be represented by the operations that

Figure 3 Schematic for simulating the motor drive on an
analog computer. The constant C � nkm/(JX + n2Jm)/La.

can be executed by an analog computer, i.e., integration,
summation and multiplication by constants.

To obtain such a representation we must first introduce
suitable state variables, i.e., variables that account for
storage. They are typically the variables that appear
differentiated in the equations. For the particular model
these variables are ω X, ω m, I and x. Since ω m and ω X

are related through an algebraic equation (A.5) one of
the variables has to be eliminated. Elimination of ω m

using equations (A.2) and (A.5) gives.

dω X

dt
� nkmI/(JX + n2Jm)

dI
dt
� (−RaI + k(ω r −ω X + 1

Ti
x) − nkmω X)/La

dx
dt
� ω r −ω X

(2)

which is an explicit state space representation. To ob-
tain an analog simulation diagram we assume that
the state variables are available as output voltages of
the integrators. Voltages representing the derivatives
as expressed by equation (2) can then be obtained
by multiplication by constants and addition and intro-
duced as inputs to the integrators as shown in Fig. 3.
Multiplication by a constant is done by a potentiometer,
addition and integration by operational amplifiers with
feedback. In practice there are additional complications.
Potentiometers can only represent multiplication with
numbers that are smaller than one. All variables have to
be scaled. In the figure potentiometers are represented
by circles, summers by triangles and integrators by a
triangle with a rectangle.

Algebraic Loops
Several manual steps were required to transform the
equations given in Appendix A to the form (1). These
calculations are easy to do in the specific case but they
are quite tedious and error prone for more complex sys-
tems. The connection to the physical processes are par-
tially lost in the transformations. It is easy to recog-
nize the controller in the analog simulation diagram in
Fig. 3, but the gearbox and the inertias are no longer
visible. They appear combined in the coefficient C . The
reason for this is that analog simulation cannot deal
with differential algebraic equations. If it is attempted

2

to simulate the basic equations in Appendix A directly
there will be a loop which only contains algebraic equa-
tions. This is caused by the relation (A4). This is not
easy to discover without analysing the equations. The
phenomenon which is well known in analog simulation
is called the algebraic loop problem. One way of dealing
with it in analog computing was to introduce a small ca-
pacitor in the algebraic loop. This amounts to replacing
an algebraic equation with a differential equation that
settles quickly. This could give large initial transients
but it often worked well.

NUMERICAL INTEGRATION

Numerical solution of differential equation is an essen-
tial ingredient of digital simulators.

Ordinary Differential Equations (ODE)
There are many ways to find approximate numerical
solutions to an ordinary differential equations such as
(1). The methods are based on the idea of replacing
the differential equations by a difference equation. Eu-
lers method is based on approximation of the deriva-
tive by a first order difference. There are more effi-
cient techniques such as Runge-Kutta and multi-step
methods. These methods were well known when digital
simulators emerged in the 1960s. This field of numeri-
cal mathematics experienced a revival because of the
impact of digital computers. Important contributions
were given to stability of difference approximations, see
Dahlquist (1959) and Henrichi (1962). Automatic step
length adjustment was another important contribution,
see Fehlberg (1964). Systems with both fast and slow
modes (stiff systems) posed a particular difficulty for
explicit methods. It is necessary to choose a very short
step length to have numerical stability, which gives a
very slow simulation.

Differential Algebraic Equations (DAE)

The natural models for dynamical systems are differen-
tial algebraic equations (DAE), i.e. a mixture of differ-
ential and algebraic equations. This is true even for the
simple servo in Appendix A. A general form of a DAE is

g(t, x, ẋ) � 0 (3)

It is not always possible task to convert such an
equation to an ordinary differential equation because
the Jacobian �g/� ẋ may not be invertible.

Numerical methods for differential algebraic equations
appeared in 1970. The paper Gear (1971) is one of
the early publications. Efficient codes came later, see
Brenan et al. (1989) and Hairer et al. (1989).
Numerical integration of ODEs and DAEs are very
active research fields which continue to have strong
impact on modeling and simulation, see Hairer
et al. (1987) and Hairer and Wanner (1991). Among
the interesting development are improved algorithms,
a better structuring of the code where algorithms and

error control are separated, see Gustafsson (1993) and
Olsson (1996). Algorithms for differential algebraic
equations are still not as well developed as algorithms
for ordinary differential equations.

THE ANALOG SIMULATION HERITAGE

When digital computers appeared it was natural to ex-
plore if they could be used for simulation. The develop-
ment was triggered by Selfridge (1955) which showed
how a digital computer can emulate a differential ana-
lyzer. There was a very intense activity, see Brennan
and Linebarger (1964) and Tiechroew et al. (1967).
By 1967 there were more than 23 different programs
available. Typical examples are MIMIC from Wright
Patterson [Peterson and Sansom (1965)], DYNASAR
[Lucke (1965)] from General Electric, DSL/90 [Syn and
Linebarger (1966)] and CSMP [Brennan and Silber-
berg (1968)] from IBM. One reason for the intense de-
velopment was that the a problem could be entered
in the form of analog computer diagrams and previous
working practices could be reused. It seemed easier to
change the technology than to change the paradigm.

The CSSL Standard
The CSSL report [Strauss (ed.) (1967)], commissioned
by the Simulation Council Inc (SCi), was a major
milestone since it unified the concepts and language
structures of the available simulation programs.

In CSSL a system can be described in three different
ways, as an interconnection of blocks as in MIDAS and
DYNASAR, by mathematic expressions as in MIMIC
and DSL/90 and by conventional programming con-
struct as in FORTRAN. CSSL defined a set of operators
like INTEG which emulates the integrator of the analog
computer. Other built-in operators are IMPL for break-
ing algebraic loops and applying an iterative scheme for
its solution, DELAY for time delays, HYST for hystere-
sis. Automatic sorting of the equations to proper order of
the calculation is another feature of CSSL that was in-
herited from MIMIC. The reason was to avoid spurious
delays when the inherent parallelism in the modeled
devices are mapped on a sequential machine.

The user can define new block types by means of a
MACRO definition. A macro has a list of formal param-
eters. Their appearances in expressions are textually
substituted when the macro is invoked. There is a spe-
cial REDEFINE statement to generate unique names so
that each invocation could use its own local variables.
However, there was no naming convention to access lo-
cal variables. The macro feature can be seen as a poor-
man’s class description. It is more powerful than a func-
tion in a programming language since it has local stor-
age in built-in operators like INTEG and DELAY and
the REDEFINE statement to obtain instance variables.
In an object-oriented language such instance variables
are typically accessed by dot-notation. Macro handling
is done without using information about the textual con-
tent of the macro. This can lead to severe errors just like

3

macros in C programs.

In addition to modeling features, CSSL also contains
statements for selecting integration routines and their
parameters, for controlling the simulation, and for
documentation of results. A perspective on the CSSL
standard is given in Rimvall and Cellier (1986).

ACSL
A number of software products were based on the
CSSL definition. One example is ACSL from Mitchell
and Gauthier Associates, Mitchell and Gauthier (1976)
which was the defacto standard for simulation for a long
time. ACSL is based on CSSL but certain modifications
and many enhancements were done. In particular, the
macro language, the set of built-in operators and the
set of control statements are considerably stronger than
in CSSL. Constructs for combined continuous/discrete
modeling were later added. It is thus possible to sched-
ule events when certain variables crosses limits. The
definitions were made in such a way that integration
routines can accurately find the time of the event by
utilizing zero-crossing functions and a root finder. ACSL
was implemented as a preprocessor to Fortran. Fortran
statements can be part of the model.

To illustrate the style of textual modeling in CSSL and
ACSL we give the following ACSL model of the motor
drive.

PROGRAM drive

MACRO motor(T, V, w, Ra, La, km)

MACRO REDEFINE I

T = km*I

I = INTEG((-Ra*I + V - km*w)/La, 0.0)

MACRO END

INITIAL

CONSTANT km=1.1616, Ra=0.5, La=0.02

CONSTANT k=1, Ti=1, wr = 1

CONSTANT n=100, Jl=10, Jm=2

J = Jl + Jm*n**2

END ! of initial

DYNAMIC

DERIVATIVE

T = motor(Vs, n*wl, Ra, La, km)

wl = INTEG(n*T/J, 0.0) ! Load

e = wr - wl ! Control error

Vs = k*(e + INTEG(e, 0.0)/Ti) ! PI controller

END ! of derivative

TERMT(t .ge. 1) ! Terminate after 1 second

END ! of dynamic

END ! of program

A macro has been defined for the motor. All characters
after ! are considered as comments by ACSL. Notice that
due to the problem of constraints in the shaft (algebraic
loop) it is necessary to make the same manual reduction
of the equations as was done for pure analog simulation.
The actual formulas for the combined inertia J is
calculated in an INITIAL section.

Simnon

A different approach than using textual macros for
structuring was taken in the program Simnon which
was developed at Lund University starting 1972
[Elmqvist (1975)] and ported to PC in 1985 [Elmqvist
et al. (1985)]. Simnon was part of a research program in
computer aided control engineering, see Åström (1983).
Simnon uses continuous systems, discrete systems and
connecting systems. Continuous and discrete systems
are described in state space form. Variables are named
locally in each system with names categorized as input,
output and state. The functions which give the rate of
change of states, the next state function, and the output
are specified by assignment statements. The connecting
system is a list of assignments of the form u[sys2]
� y[sys1] that tells how the inputs are defined from
outputs. The notation u[sys2] means the same as the
dot-notation sys2.u. A restriction is that only two level
hierarchies are supported. Simnon had a nice feature
for modeling mixed sampled and continuous systems.
Discrete systems where provided with a special variable
which tells the next time a discrete system should
be executed. This variable can be updated with any
expression. This gives a simple way to deal with many
different sampling schemes. It was also possible to
define systems in Fortran or Pascal. This was however
complicated to use.

Simnon was initially developed for interactive simula-
tion on a PDP-15 environment. There was a strong sep-
aration between the modeling language and the com-
mand language for executing the simulation and for
analysing the results. Basic simulation is executed by
six command only: compile systems, initialize variables,
change parameters, execute simulations, plot results
and organize plots. There is an extensive error checking.
Simnon uses global sorting of the assignments to find
the proper calculation order during compilation. Sim-
non has its own machine code generator, which gave
fast recompilation. Parameters could be changed with-
out recompilation. There is a macro command facility so
that several commands can be grouped together to form
a new command. This was very useful for documenta-
tion.

Graphical Block Diagram Modeling

Graphical representations of the type shown in Fig. 3
were used to represent models in terms of integrators,
adders and potentiometers in the early days of analog
simulation. Because of the limited input-output facili-
ties of early digital computers it was necessary to re-
vert to textual representations in the digital simula-
tors. Prototype graphical environments were designed
in the mid 1970s using a cathode ray tube (CRT) and
light pen for drawing block diagrams [van den Bosch
and Bruijn (1977)]. However, graphical modeling was
not widely used until modern work stations and the PC
with raster graphics became generally available.

Boeings simulator EASY5 from 1976 was provided with

4

e
1/(Jl+Jm*n^2)

T2wdot

Step
PID

PI

Vs

wl
T

Motor

s

1

Inertia

T

Figure 4 A SIMULINK model for the motor drive in Fig. 1.

1

T

n*km

emf2

n*km

emf1Sum

Ra

Resistor

1/La

Inductor

s

1

I

2

wl

1

Vs

Figure 5 A SIMULINK model for the motor in Fig. 2.

a graphical user interface. The matrix environments
MATLAB and MATRIXX which appeared in the 1980s
were provided with modeling tools. SystemBuild [Shah
et al. (1985)] which is integrated with MATRIXX ap-
peared in 1984 and SIMULINK (originally called SIM-
ULAB) which is integrated with MATLAB appeared in
1991 [Grace (1991)]. A new PC based system VisSim
[Darnell and Kolk (1990)] appeared in 1990. Mitchell
and Gauthier introduced the ACSL Graphics Modeller
in 1993.

To illustrate the graphical modeling systems we will
present a SIMULINK model for the simple motor drive
shown in Fig. 4– 5. It is interesting to note the similar-
ities with the analog diagram in Fig. 3.

The graphical modeling tools share many properties.
The model is constructed from graphical blocks with
input and output ports that are connected by drawing
lines. Parameters can be set in dialog windows which
appear by clicking on the blocks. There are extensive
block libraries for simple arithmetic operations, func-
tions, transfer functions, linear systems in state space
form, controllers, etc. It is possible to define aggre-
gate models with inputs and outputs and to reuse such
composite models in any number of hierarchical levels.
Connections represent either scalar or vector variables
with fixed causality. EASY5 and ACSL also have tex-
tual representations of expressions which means that
the behavior of a new block can be defined textually.
SIMULINK does not have any textual representation
of expressions except Matlab notation, but it may slow
down the simulation because the expressions are inter-
preted. SIMULINK blocks can be defined as C-code, but
this method is quite complicated.

The analog computing paradigm with its requirement
of explicit state models (ODE) is a fundamental lim-
itation of block diagram modeling. The blocks have a
unidirectional data flow from inputs to outputs. This is

the reason why an object like a gearbox in the simple
motor drive cannot be dealt with directly. It is also the
reason why motor and load inertia appear in the mixed
expression in the SIMULINK model in Fig. 4. A severe
consequence is that it is cumbersome to build physics
based model libraries in the block diagram languages.
In EASY5 there is a special connector which permits
connections with bidirectional dataflow. A general solu-
tion to this problem required a paradigm shift.

MODELING IN SPECIFIC DOMAINS

It is possible to design modeling environments that
are very user friendly by restricting the domain of
the models. A large number of tools of this type have
been developed in several branches of engineering. A
model is assembled simply by connecting components
from predefined libraries. The idea is to relieve the
user from model development by providing readymade
models or model components, which can be assembled
to a complete model. A brief discussion of some tools of
this type is given in this section.

Electrical systems
The system SPICE [Nagel and Pederson (1973);
Nagel (1975)], which was developed for analog mod-
eling of electrical circuits is a typical example. Elec-
trical circuits are formed simply by connecting resis-
tors, capacitors, inductors and transistors. VHDL-AMS
[IEEE (1997)] is an extension of the discrete circuit
modeling language VHDL for combined continuous and
discrete models. VHDL-AMS is a large and rich model-
ing language targeted mainly at the application domain
of electronics hardware.

EMTP (Electro Magnetic Transients Program)
[Ele (1989)] and its relatives ATP and EMTDC, are
industry standard for electro-magnetic transients in
power systems. It was developed in the late 1960s by
Dommel at the Bonneville Power Administration. The
program PSS/E (Power System Simulator) is a widely
used program for simulation of transmission networks
which was developed in the mid 1970s.

Mechanical systems
Multi-body systems are used to model 3-dimensional
mechanical systems, such as robots, satellites and ve-
hicles. Vectors and matrices are natural elements for
modeling. Interfaces to CAD databases are needed to
generate models automatically from a CAD topology and
to animate the results.

The first tools appeared in the end of the 1970s.
DADS was developed at the University of Iowa ap-
peared around 1984. Several commercial tools are now
available. ADAMS is a popular software. The German
Aerospace Establishment, DLR has a long tradition
from Fadyna (1977) and Medyna (1984) to SIMPACK.
An interesting feature is that the code for simulation
of multi-body systems use both symbolic and numeric
computing.

5

Energy and process systems

SpeedUp [Sargent and Westerberg (1964); Perkins and
Sargent (1982)] from the Centre for Process Systems
Engineering, Imperial College in London, is widely
used for dynamic simulation in chemical engineering.
The same group also developed gPROMS (general Pro-
cess Modelling System) [Barton and Pantelides (1994)].
SpeedUp and gPROMS exploit numerical DAE solvers
and automatic differentiation for analytical Jacobian
calculations.

The Modular Modeling System (MMS) is a system for
simulation of nuclear and fossil power plants developed
by EPRI [Divakaruni (1986)]. It consists of a user
interface and modules for ACSL or EASY5. Since ACSL
requires the models to be on explicit state space form,
there are many approximations to avoid algebraic loops.
This make it very difficult to modify existing models and
add new ones.

There are several tools, for simulation of heating,
ventilation and air conditioning e.g., HVACSIM+

[Clark (1985)] and TRNSYS (1983). These languages
are in the spirit of the CSSL languages. To support
exchange of models between tools a standard Neutral
Model Format (NMF) was proposed to the building and
energy systems simulation community in 1989 [Sahlin
and Sowell (1989); Sahlin et al. (1996)]. The language
is formally controlled by a committee within Am. Soc.
for Heating, Refrigerating and Air-Conditioning Engi-
neers. Several independently developed NMF tools and
libraries exist.

Summary
Software for specific domains is very easy to use if the
problem fits the tool directly. It is however often very
difficult to modify the tools and to add new features.
Some things that can be learned from the modeling
environment is that model libraries are very useful and
that the analog computing paradigm is too limited.

PHYSICAL MODELING

A typical procedure for physical modeling is to cut a sys-
tem into subsystems and to account for the behavior at
the interfaces. Each subsystem is modeled by balances
of mass, energy and momentum and material equations.
The complete model is obtained by combining the de-
scriptions of the subsystems and the interfaces. This
approach requires a different paradigm for modeling.
A model is considered as a constraint between system
variables. This leads naturally to DAE descriptions. The
approach is very convenient for building reusable model
libraries.

Bond Graphs
Bond Graphs are directed graphs where the subsystems
are the nodes and the power flow in the system is shown
by the branches, see Karnopp and Rosenberg (1968).
The connections are called power bonds and have asso-

:Vs

velcon

:wl

:Ra

:Jl:Jm:La

:emf :wm:i :gear

Figure 6 A bond graph model for the motor drive in Fig. 1.

ciated effort variables (such as voltage and torque) and
flow variables (current and angular velocity). A bond
graph, developed by the tool 20-SIM [Broenink (1997)],
of the simple motor drive is given in Fig. 6. The volt-
age source for the motor is described as a "modulated
effort source" (MSe). Its power flow is divided between
the resistor, inductor and electro-motorical force (emf).
Since these elements are connected in series they have
the same current (flow). Such a distribution of power
with retained flow, is accomplished by a so called 1-
junction in the bond graph. There are also 0-junctions
which maintain the same effort. The conversion from
electric power to mechanical power is accomplished with
a gyrator (GY). The power from the gyrator is stored in
the rotating intertia (Jm) and flows through the gear
box, which is modeled by a transformer (TF), to the en-
ergy storage (Jl).
There are algorithms to assign causalities in a bond
graph. The bond graph of Fig. 6 is non-trivial because of
the constraint between wm and wl. A tool will typically
warn about "derivative causality". In most cases, it
is possible to use a good DAE-solver which is robust
enough to handle such high index problems.

Dymola
The Dynamic Modeling Language (Dymola) by
Elmqvist (1978), was an early effort to support physi-
cal modeling. Its designer, who also wrote Simnon had
experienced the limitations of the analog computing
paradigm in modeling thermal power stations. There
was too large a gap between the user’s problem and the
model description that the computer would understand.
The user had to collect all the equations of the differ-
ent components and manually transform them in order
to give the expressions for the derivatives. Modeling
should be much closer to the way an engineer builds
a real system, first trying to find standard components
like motors, pumps and valves from manufacturers’ cat-
alogues with appropriate specifications and interfaces.
Only if there does not exist a particular subsystem, the
engineer would actually construct it.

The design of Dymola was strongly influenced by the
first object-oriented language, Simula, see Birtwistle
et al. (1973) and by experience of the power of symbolic
computations. Simula with its hierarchical problem
decomposition and use of classes for reuse provided

6

a methodology for orienting a model to its physical
subsystem. The behavior description in Simula was
designed for discrete event simulation with sequential
programming with coroutines and methods. This was
not suitable for continuous modeling, since the laws of
physics are equations. Coupling between objects were in
Simula expressed by calling methods in other objects.
Physical coupling is typically symmetric and it imposes
constraints on the interface variables, like Kirchhoff ’s
voltage and current laws.

Dymola introduced model classes, which at the time
were called model types, and a submodel statement to
invoke classes similar to the ref-construct in Simula.
Submodels were described by equations. A construct
called cut was introduced to name connection mecha-
nisms such as wires, pipes and shafts. It declares vari-
ables that were associated with the cut and are con-
strained when cuts are connected to each other to define
the topology. These constructs made it possible to de-
scribe models in many different domains like electrical
circuits, mechanics, thermo-dynamics, etc. in a uniform
way. Such a model description was equivalent to the col-
lection of the equations of each instantiated model class
and the formed connection equations, i.e., a DAE.

Symbolic formula manipulation was used extensively
to convert the DAE to ODEs. The graph theoretic
methods in Tarjan (1972)and Wiberg (1977)were found
to be very effective. They were typically designed for
sparse linear problems but were applicable to non-linear
DAEs since only structural information was utilized.
The resulting linear equations were solved symbolically
and remaining nonlinear equations numerically.

The parser, the structural analysis and the formula
manipulation was originally implemented in Simula.
The program was not useful for large problems at
the time due to limited memory capacity (64 kwords)
on machines like Univac 1108. The largest problem
handled was a thermal power plant with 300 equations,
i.e, it was not industrially applicable. Cellier used
Dymola in modeling classes in the late 1980s and
in his modeling book Cellier (1991). Development of
Dymola was resumed in 1992 when Elmqvist founded
Dynasim AB in Lund and made a commercial version.
The major computer architecture and operating systems
then supported large linear address space suitable for
symbolic computation on large models. Hardware and
software had finally caught up with the ideas. In the
mean time a few other developments had taken place.
They will be discussed below.

Omola and OmSim
By the mid 1980s there had been major developments
in hardware, software and numerics that made it worth
while to continue the modeling effort that started
with Dymola. Work stations and personal computers
with powerful graphics were available. Object oriented
programming and software had advanced considerably.
Numerical algorithms for solving DAEs were available

[Brenan et al. (1989); Hairer et al. (1989)]. Powerful
computing environments were also available.

A research program in object oriented modeling was ini-
tiated at the Department of Automatic Control in Lund.
Preliminary work was done on modeling, see Åström
and Kreutzer (1986) and interactive graphics Elmqvist
and Mattsson (1989). The project soon focused on mod-
eling languages. Omola (Object-oriented modeling lan-
guage) appeared in late 1988, see Andersson (1989).
The first prototypes were written in CommonLisp and
KEE. As the language design stabilized it was written in
C++, see Mattsson et al. (1993). Models can be decom-
posed hierarchically with well defined interfaces that
describe interaction. All model components are repre-
sented as classes. Inheritance and specialization sup-
port easy modification. Omola supports behavioral de-
scriptions in terms of DAEs and difference equations.

Omola has primitives for describing discrete events
which allows definition of classes to support high level
descriptions as finite state machines and Petri nets
[Andersson (1994)]. A kernel for model representation
based on Omola and an interactive environment, Om-
Sim, was also implemented see Mattsson et al. (1993)
and Andersson (1994). The complete environment in-
cludes a graphical model editor, consistency analysis,
symbolic analysis and manipulation, ODE and DAE
solvers and interactive plotting. The software is imple-
mented in C++.

Several applications were made in parallel with the de-
velopment of Omola. The idea was to explore if the lan-
guage constructs were suitable for different domains.
Applications studied include chemical processes, power
generation and power networks, see Nilsson (1993).
This work resulted in guidelines for structure and class
hierarchy decomposition and organization of model li-
braries. Issues relating to component composition ver-
sus multiple inheritance were also raised. Language
extensions were suggested. Typical examples are con-
structs for system structuring using arrays of compo-
nents and language elements to define regular connec-
tions patterns. It is useful for modeling of a distilla-
tion column which consists of a set of trays connected
in series. Component arrays are also useful for spatial
discretization. Medium and machine decomposition was
proposed as method to separate the description of the
process media from the processing units. This can be
supported by allowing model classes to be parameters.

Modelica
In addition to Dymola and Omola, there are several
other languages with similar ideas defined, such as:
ASCEND [Piela et al. (1991)], gPROMS, NMF [Sahlin
et al. (1996)], ObjectMath [Fritzson et al. (1995)],
SIDOPS+ [Breunese and Broenink (1997), Smile [Kloas
et al. (1995)], and U.L.M. [Jeandel et al. (1996)]. The
situation was thus similar to the mid 1960s when CSSL
was defined as a unification of the techniques and ideas
of many different simulation programs. An interna-
tional effort was initiated in September 1996 for the

7

model MotorDrive

Motor motor;

PI controller;

Gearbox gearbox(n=100);

Shaft Jl(J=10);

Tachometer wl;

equation
connect (controller.out, motor.in);

connect (motor.flange , gearbox.a);

connect (gearbox.b , Jl.a);

connect (Jl.b , wl.a);

connect (wl.w , controller.in);

end MotorDrive;

Figure 7 A Modelica model of the system in Fig. 1.

purpose of bringing together expertise in object-oriented
physial modeling and defining a modern uniform model-
ing language. The language is called Modelica1. Version
1.0 was finished in September 1997.

Modelica is intended for modeling within many ap-
plication domains such as electrical circuits, multi-
body systems, drive trains, hydraulics, thermodynami-
cal systems, and chemical processes etc. It supports sev-
eral formalisms: ordinary differential equations (ODE),
differential-algebraic equations (DAE), bond graphs, fi-
nite state automata, and Petri nets etc. Modelica is in-
tended to serve as a standard format so that models
arising in different domains can be exchanged between
tools and users. More information about Modelica can
be found in Elmqvist et al. (1998).
Fig. 1 and Fig. 2 are actually Modelica models of the mo-
tor drive presented in Dymola. The physical components
and their interconnections are shown graphically. Pa-
rameters can be set by clicking on the components. The
textual Modelica representation is shown in Fig. 7. Mod-
elica has constructs for storing and exchanging graphi-
cal information (positions, connection lines, icons). This
has, however, been omitted in Fig. 7.

CONCLUSIONS

Simulation is essential for dealing with complex sys-
tems. Techniques for modeling and simulation have ad-
vanced substantially since the mid 1920s. In this paper
we have attempted to capture the historical develop-
ment. It started with mechanical differential analyz-
ers which were able so solve a few ordinary differen-
tial equations. These systems were available only to
a small group of researchers. The replacement of me-
chanics by electronics in the 1950s was a major ad-
vance which led to industrialization and a significant
increase of the availability of modeling and simulation.
Another major advance occured when the analog com-
puters were replaced by digital computers in the 1960s.
It is interesting that only one of the analog comput-
ing company made the transition to digital simulators,
see Gilbert and Howe (1978). Another major advance

1ModelicaTM is a trade mark of the Modelica Design Group

happened in the 1990s when personal computers and
computer graphics became generally available. It is in-
teresting to observe that ideas change slower than tech-
nology. The analog simulation paradigm is still prevail-
ing. It is only in the 1990s that it has been more widely
realised that a paradigm shift is needed. This is driven
by demands from users to be able to simulate complex
multi-domain models and advances in object oriented
programming, software for differential algebraic sys-
tems, symbolic computing and advanced graphics. The
modern approaches build on non-causal modeling with
mathematical equations and the use of object-oriented
constructs to facilitate reuse of modeling knowledge.

REFERENCES

ANDERSSON, M. (1989): “An object-oriented modeling environ-
ment.” In IAZEOLLA et al., Eds., Simulation Methodologies,
Languages and Architectures and AI and Graphics for
Simulation, 1989 European Simulation Multiconference,
Rome, pp. 77–82. The Society for Computer Simulation
International.

ANDERSSON, M. (1994): Object-Oriented Modeling and Simula-
tion of Hybrid Systems. PhD thesis ISRN LUTFD2/TFRT-
-1043--SE, Department of Automatic Control, Lund Insti-
tute of Technology, Lund, Sweden.

ÅSTRÖM, K. J. (1983): “Computer aided modeling, analysis and
design of control systems — A perspective.” IEEE Control
Systems Magazine, 3, pp. 4–16.

ÅSTRÖM, K. J. and W. KREUTZER (1986): “System represen-
tations.” In Proc. IEEE Control Systems Society Third
Symposium on Computer-Aided Control Systems Design
(CACSD). Arlington, Virginia.

BARTON, P. and C. PANTELIDES (1994): “Modeling of combined
discrete/continuous processes.” AIChE J., 40, pp. 966–979.

BIRTWISTLE, G. M., O. J. DAHL, B. MYHRHAUG, and K. NYGAARD

(1973): SIMULA BEGIN. Auerbach Publishers Inc.
BRENAN, K. E., S. L. CAMPBELL, and L. R. PETZOLD (1989): Nu-

merical Solution of Initial-Value Problems in Differential-
Algebraic Equations. North-Holland, Amsterdam. Also
available in SIAM’s Classics in Applied Mathemathics se-
ries, No. 14, 1996.

BRENNAN, R. D. and R. N. LINEBARGER (1964): “A survey of
digital simulation—Digital analog simulator programs.”
Simulation, 3.

BRENNAN, R. D. and M. Y. SILBERBERG (1968): “The sys-
tem/360 continuous system modeling program.” Simula-
tion, 11, pp. 301–308.

BREUNESE, A. P. and J. F. BROENINK (1997): “Modeling mecha-
tronic systems using the SIDOPS+ language.” In Pro-
ceedings of ICBGM’97, 3rd International Conference on
Bond Graph Modeling and Simulation, Simulation Series,
Vol.29, No.1, pp. 301–306. The Society for Computer Sim-
ulation International.

BROENINK, J. F. (1997): “Modelling, simulation and analysis
with 20-sim.” Journal A, Benelux Quarterly Journal on
Automatic Control, 38:3, pp. 20–25. Special issue on
Computer Aided Control System Design, CACSD.

BUSH, V. (1931): “The Differential Analyzer: A new machine
for solving differential equations.” Journal of the Franklin
Institute, 212, pp. 447–488.

CANON, M. R. (1973): “Magnitude and time scaling of state-
variable equations for analog/hybrid computing.” Simula-
tion, 21, pp. 23–28.

8

CELLIER, F., H. ELMQVIST, and M. OTTER (1995): “Modeling
from physical principles.” In LEVINE, Ed., The Control
Handbook, pp. 99–108. CRC Press, Boca Raton, FL, USA.

CELLIER, F. E. (1991): Continuous System Modeling. Springer-
Verlag, New York, USA.

CLARK, D. R. (1985): “HVACSIM+ Building systems and equip-
ment simulation program.” Reference Manual NBSIR 85-
3243. U.S. Department of Commerce, National Bureau of
Standards, Washington, DC.

DAHLQUIST, G. (1959): Stability and error bounds in the
numerical integration of ordinary differential equations.
Transactions No. 130. The Royal Institute of Technology,
Stockholm, Sweden.

DARNELL, P. A. and R. A. KOLK (1990): “An interactive sim-
ulation and control design environment.” In Proceedings
of the 1990 European Simulation Symposium, pp. 56–60.
SCS.

DIVAKARUNI, S. M. (1986): “The application of simulation in
large energy system analysis.” Modeling, Identification
and Control, 6, pp. 231–247.

ELECTRIC POWER RESEARCH INSTITUTE, INC. (EPRI) (1989):
Electromagnetic Transients Program (EMTP) Revised
Rule Book Version 2.0.

ELMQVIST, H. (1975): “SIMNON— An interactive simulation
program for nonlinear systems — User’s manual.” Techni-
cal Report TFRT-7502. Department of Automatic Control,
Lund Institute of Technology, Lund, Sweden.

ELMQVIST, H. (1978): A Structured Model Language for Large
Continuous Systems. PhD thesis TFRT-1015, Department
of Automatic Control, Lund Institute of Technology, Lund,
Sweden.

ELMQVIST, H., K. J. ÅSTRÖM, and T. SCHÖNTHAL (1985): Sim-
non — User’s Guide for MS-DOS Computers. Studentlit-
teratur, Lund, Sweden.

ELMQVIST, H. and S. E. MATTSSON (1989): “A simulator for
dynamical systems using graphics and equations for mod-
elling.” IEEE Control Systems Magazine, 9:1, pp. 53–58.

ELMQVIST, H., S. E. MATTSSON, and M. OTTER (1998): “Mod-
elica — The new object-oriented modeling language.” In
Proceedings of the 12th European Simulation Multiconfer-
ence (ESM’98). SCS, The Society for Computer Simulation,
Manchester, UK.

FEHLBERG, E. (1964): “New high-orderRunge-Kutta formulas
with step size control for systems of firts and second order
differential equations.” ZAMM, 44.

FRITZSON, P., L. VIKLUND, D. FRITZSON, and J. HERBER (1995):
“High-level mathematical modeling and programming.”
IEEE Software, 12:3.

GEAR, C. W. (1971): “Simultaneously numerical solution of
differential-algebraic equations.” IEEE Transactions on
Circuit Theory, CT-18, pp. 217–225.

GILBERT, E. O. and R. M. HOWE (1978): “Design considerations
in a multi-computer.” In AFIPS Conference Proceedings,
vol. 47, pp. 385–393.

GRACE, A. C. W. (1991): “SIMULAB, An integrated environ-
ment for simulation and control.” In Proceedings of the
1991 American Control Conference, pp. 1015–1020. Amer-
ican Autom. Control Council.

GUSTAFSSON, K. (1993): “Object oriented implementation of
software for solving ordinary differential equations.” Sci-
entific Programming, 2, pp. 217–225.

HAIRER, E., C. LUBICH, and M. ROCHE (1989): The Numeri-
cal Solution of Differential-Algebraic Systems by Runge-
Kutta Methods. Lecture Notes in Mathematics No. 1409.
Springer-Verlag, Berlin.

HAIRER, E., S. NØRSETT, and G. WANNER (1987): Solving Ordi-
nary Differential Equations I — Nonstiff Problems. Com-
putational Mathematics No. 8. Springer-Verlag, Berlin.

HAIRER, E. and G. WANNER (1991): Solving Ordinary Dif-
ferential Equations II — Stiff and Differential-Algebraic
Problems. Computational Mathematics No. 14. Springer-
Verlag, Berlin.

HENRICHI, P. (1962): Discrete variable methods in ordinary
differential equations. John Wiley & Sons, Inc.

IEEE (1997): “Standard VHDL Analog and Mixed-Signal
Extensions.” Technical Report IEEE 1076.1. IEEE.

JACKSON, A. S. (1960): Analog Computation. McGraw-Hill,
New York.

JEANDEL, A., F. BOUDAUD, P. RAVIER, and A. BUHSING (1996):
“U.L.M: Un Langage de Modélisation, a modelling lan-
guage.” In Proceedings of the CESA’96 IMACS Multicon-
ference. IMACS, Lille, France.

KARNOPP, D. C. and R. C. ROSENBERG (1968): Analysis and sim-
ulation of multiport systems — The bond graph approach
to physical system dynamics. MIT Press, Cambridge, MA,
US.

KHEIR, N. A., Ed. (1988): Systems Modeling and Computer
Simulation. Marcel Dekker, Inc, New York, USA, USA.

KLOAS, M., V. FRIESEN, and M. SIMONS (1995): “Smile — A sim-
ulation environment for energy systems.” In SYDOW, Ed.,
Proceedings of the 5th International IMACS-Symposium
on Systems Analysis and Simulation (SAS’95), vol. 18–19
of Systems Analysis Modelling Simulation, pp. 503–506.
Gordon and Breach Publishers.

KOLMOGOROV, A. N. (1957): “On the representation of continu-
ous functions of many variables by superposition of contin-
uous functions of one variable and addition.” Dokl. Akad.
Nauk USSR, 114, pp. 953–956.

KREUTZER, W. (1986): System Simulation — Programming
styles and Languages. Addison-Wesley, Reading MA, USA.

LINKENS, D. A., Ed. (1993): CAD for Control Systems. Marcel
Dekker, Inc.

LUCKE, VIRGIL, H. (1965): “Dynasar — Analysis methods
developed for the dynamic system analyzer.” In Preprints
of the 1965 Joint Automatic Control Conference, pp. 780–
786.

MARQUARDT, W. (1996): “Trends in computer-aided process
modeling.” Computers chem. Engng, 20, pp. 591–607.

MATTSSON, S. E., M. ANDERSSON, and K. J. ÅSTRÖM (1993):
“Object-oriented modelling and simulation.” In LINKENS,
Ed., CAD for Control Systems, pp. 31–69. Marcel Dekker,
Inc.

MITCHELL, E. E. L. and J. S. GAUTHIER (1976): “Advanced con-
tinuous simulation language (ACSL).” Simulation, pp. 72–
78.

NAGEL, L. (1975): “SPICE2: A computer program to simulate
semiconductor circuits.” Memorandum ERL-M520. Elec-
tronics Research Laboratory, College of Engineering, Uni-
versity of California, Berkeley, CA, USA.

NAGEL, L. and D. O. PEDERSON (1973): “Simulation program
with integrated circuit emphasis (SPICE).” Memorandum
ERL-M382. Electronics Research Laboratory, College of
Engineering, University of California, Berkeley, CA, USA.

NILSSON, B. (1993): Object-Oriented Modeling of Chemical
Processes. PhD thesis ISRN LUTFD2/TFRT--1041--SE,
Department of Automatic Control, Lund Institute of Tech-
nology, Lund, Sweden.

OLSSON, H. (1996): “Object oriented solvers for initial value
problems.” In Proceedings of the OONSCI96.

OTTER, M. and F. E. CELLIER (1995): “Software for modeling

9

and simulating control systems.” In LEVINE, Ed., The
Control Handbook, pp. 415–428. CRC Press, Boca Raton,
FL, USA.

PAYNTER, H. M. (1989): “The differential analyzer as an
active mathematical instrument.” IEEE Control Systems
magazine, 9, pp. 3–8.

PERKINS, J. D. and R. W. H. SARGENT (1982): “SPEEDUP:
A computer program for steady-state and dynamic sim-
ulation and design of chemical processes.” In MAH AND

REKLATIS, Eds., Selected Topics in Computer-Aided Pro-
cess Design and Analysis, AIChE Symposium Series 78.

PETERSON, H. and F. SANSOM (1965): “MIMIC—A digital
simulator program.” SESCA Internal Memo No. 65-12.
Wright-Patterson Air Force Base, Ohia, US.

PIELA, P., T. EPPERLY, K. WESTERBERG, and A. WESTERBERG

(1991): “ASCEND: An object-oriented computer environ-
ment for modeling and analysis: the modeling language.”
Computers and Chemical Engineering, 15:1, pp. 53–72.

RAGAZZINI, J. R., R. H. RANDALL, and F. A. RUSSELL (1947):
“Analysis of problems in dynamics by electronic circuits.”
Proc. IRE, 35, pp. 444–452.

RIMVALL, M. and F. CELLIER (1986): “Evolution and perspec-
tives of simulation languages following the CSSL stan-
dard.” Modeling, Identification and Control, 6, pp. 181–
199.

SAHLIN, P., A. BRING, and E.F.SOWELL (1996): “The Neutral
Model Format for building simulation, Version 3.02.”
Technical Report. Department of Building Sciences, The
Royal Institute of Technology, Stockholm, Sweden.

SAHLIN, P. and E. SOWELL (1989): “A neutral format for
building simulation models.” In Proceedings of Building
Simulation ’89. IBPSA, Vancouver, Canada.

SARGENT, R. W. H. and A. W. WESTERBERG (1964): “SPEED-UP
in chemical engineering design.” Trans. Inst. Chem. Eng.
(London), 42, pp. 190–197.

SELFRIDGE, R. G. (1955): “Coding a general purpose digital
computer to operate as a differential analyzer.” In Pro-
ceedings 1955 Western Joint Computer Conference, IRE.

SHAH, S. C., M. A. FLOYD, and L. L. LEHMAN (1985): “MA-
TRIXX: Control design and model building CAE capability.”
In JAMSHIDI AND HERGET, Eds., Computer-Aided Control
Systems Engineering, pp. 181–207. Elsevier Science Pub-
lishers B.V. (North-Holland).

STRAUSS (ED.), J. C. (1967): “The SCi continuous system
simulation language (CSSL).” Simulation, 9, pp. 281–303.

SYN, W. M. and R. N. LINEBARGER (1966): “DSL/90 — A digital
simulation program for continuous system modeling.” In
AFIPS Conference Proceedings, vol. 28.

TARJAN, R. E. (1972): “Depth-first search and linear graph
algorithms.” SIAM J. Computing, 1, pp. 146–160.

TIECHROEW, D., J. F. LUBIN, and T. D. TRUITT (1967): “Discus-
sion of computer simulation and comparison of languages.”
Simulation, 9, pp. 181–190.

TRNSYS (1983): “A transient simulation program.” Reference
Manual. Solar Energy Laboratory, University of Wiscon-
sin, Wisconsin, US.

VAN DEN BOSCH, P. P. J. and P. BRUIJN (1977): “The directed
digital computer as a teaching tool in control engineering;
interactive instruction and design.” In Proceedings of
the IFAC Symposium on Trends in Automatic Control
Education, pp. 260–271.

WIBERG, T. (1977): Permutation of an Unsymmetric Matrix to
Block Triangular Form. PhD thesis, Department of Infor-
mation Processing, University of Umeå, Umeå, Sweden.

APPENDIX A — Equations for the motor drive

The equations for the motor drive shown in Fig. 1 are
given below.

The load is modeled as a simple rotating inertia. Let
ω X be the angular velocity of the load, JX be the moment
of inertia of the load and Tg the torque on the load from
the gear box. The equation of motion of the load then
becomes

JX

dω X

dt
� Tg (A.1)

The electric motor is modeled as shown in Fig. 2.
Let ω m be the angular velocity of the motor, Jm its
moment of inertia, km the torque constant, I the rotor
current, and Tm the torque exerted on the motor axis by
the gear box. The equation of motion of the motor rotor
then becomes

Jm
dω m

dt
� kmI − Tm (A.2)

The electrical properties of the rotor can be character-
ized by the rotor resistance Ra and inductance La. If Vs

is the voltage applied to the rotor winding Kirchhoff ’s
law for the motor rotor becomes.

La
dI
dt
+ RaI � Vs − kmω m (A.3)

The gearbox has the gear ratio, n. Neglecting the
moment of inertia of the gears the gearbox can be
modeled by

ω m � nω X (A.4)
Tg � nTm (A.5)

The controller is assumed to be a PI controller. Let
ω r be the set point of the controller. The power amplifier
and the controller can then be modeled by

Vs � k(ω r −ω X + 1
Ti

x) (A.6)
dx
dt
� ω r −ω X (A.7)

where k is the gain of the controller and the power
amplifier and Ti is the integration time of the controller.

Summary
The model of the system is described by eight variables
(ω X, ω m, ω r, Tm, Tg , I, Vs and x), eight parameters (JX,
Jm, km, n, La, Ra, k, and Ti), four ordinary differential
equations and three algebraic equations. For a typical
experiment, we need also to specify the set point ω r(t).

10

