EVOLUTION OF CONTINUOUS-TIME MODELING AND SIMULATION

Karl Johan Åström
Department of Automatic Control
Lund Institute of Technology
Box 118, SE-221 00 Lund, Sweden
E-mail: kja@control.LTH.se

Hilding Elmqvist
Dynasim AB
Research Park Ideon
SE-223 70 Lund, Sweden
E-mail: Elmqvist@Dynasim.se

Sven Erik Mattsson
Department of Automatic Control
Lund Institute of Technology
Box 118, SE-221 00 Lund, Sweden
E-mail: SvenErik@control.LTH.se

KEYWORDS
History, simulation, modeling, differential equations, differential-algebraic equations, object-orientation

ABSTRACT
Modeling and simulation have experienced an amazing development since its beginning in the 1920s. At that time, the technology was available only at a handful of university groups. Today it is available on the desk of all engineer who needs it. The paper presents the current status of modeling and simulation. It draws on the historical perspective to explain how the field has developed. Particular emphasis is given to shifts in technology and paradigms.

INTRODUCTION
Modeling and simulation are indispensable when dealing with complex engineering systems. It makes it possible to do essential assessment before systems are built, it can alleviate the need for expensive experiments and it can provide support in all stages of a project from conceptual design, through commissioning and operations. The following quote from one of the early pioneers Prof. Vannevar Bush, who worked on problems in power systems, is still highly relevant:

“Engineering can proceed no faster than the mathematical analysis on which it is based. Formal mathematics is frequently inadequate for numerous problems pressing for solution, and in the absence of radically new mathematics, a mechanical solution offers the most promising and powerful attack wherever a solution in graphical form is adequate for the purpose. This is usually the case in engineering problems.”

Technology has naturally been an important factor in the development of simulation. Analog techniques were predominant from 1920 to 1950. Major changes took place when digital computers were available and simulation techniques have then exploited the advances in digital computers and software techniques such as computer graphics.

There is a large literature on simulation in wide range of engineering journals. Early developments are described in Brennan and Linebarger (1964) and Tiechroew et al. (1967). More recent overviews found in the books Kreutzer (1986), Kheir (1988), Cellier (1991) and Linkens (1993) and the survey papers Otter and Cel-lier (1995), Cellier et al. (1995) and Marquardt (1996). Lists of software are published yearly by the Society for Computer Simulation.

In this paper we will essentially follow the historical development. We will start with analog techniques which were based on ordinary differential equations and block diagrams. A family of digital simulators which have inherited many of the properties of analog computing are then treated. The advantages and the limitations of the analog heritage are discussed. Domain oriented special purpose simulators are then described. This is a natural way to discuss issues such as efficiency and user friendliness. Then we will discuss a new generation of simulators which are based on object oriented modeling. They cover multiple domains and permit multiple views of the system. They also have efficient ways to deal with decomposition and aggregation.

ANALOG SIMULATION
The first simulators were analog. The idea is to model a system in terms of ordinary differential equations and then make a physical device that obeys the equations. The physical system is initialized with proper initial values and its development over time then mimics the differential equation.

Simulation of an ordinary differential equation (ODE)
\[
\frac{dx}{dt} = f(t, x)
\]
(1)
can be accomplished by integrators and function generation. It was actually shown by Kolmogorov (1957) that continuous functions of several variables could be approximated by combinations of scalar products and generation of scalar functions. This idea was used for function generation in early analog simulation although it was not known at the time that the method was generally applicable.

The mechanical differential analyzer developed by Vannevar Bush at MIT was the first general purpose tool to simulate dynamical systems [Bush (1931)]. Variables were represented by angles. Integration was performed by the ball and disc integrator, which had been used
in planimeters for a long time. Function generation was made by gear boxes and cams. Torque amplifiers were used for amplification. A major shift in technology occurred with the publication of the paper Ragazzini et al. (1947), which demonstrated that that simulation could be done electronically. Variables were represented as voltages in the electronic simulators. This made it easy to plot variables and to set up a problem. It also paved the way for industrial production and wide spread use of analog computing, see Paynter (1989). Companies that produced electronic simulators also emerged e.g. Philbrick, Applied Dynamics and Electronic Associates were some of the major actors. Aerospace companies were major customers. A good overview of analog techniques is given in Jackson (1960).

How to Perform Analog Simulation

In analog computing, a differential equation (1) must be represented in terms of the fundamental operations, integration, addition, multiplication, and function generation. Since the analog computer has limited range and resolution the variables must be scaled. Scaling is tedious but it also gives useful insight into the structure of the problem, see Canon (1973). It is also necessary make the interconnections required to represent the function $f(t,x)$ in (1). In electronic analog computers the interconnections were made by patching cables in a board and parameters were set with potentiometers. The whole procedure of setting up a problem was tedious. Execution was fast but precision was limited. The analog computers were highly interactive, because parameters could be changed during the operation.

An Example

A simple example will be used for illustration throughout the paper. The system, which is shown in Fig. 1–2, is a motor drive with an electric motor, a gearbox, a load and a controller. Equations are given in Appendix A.

To make an analog simulation of the motor drive the equations have to be represented by the operations that can be executed by an analog computer, i.e., integration, summation and multiplication by constants.

To obtain such a representation we must first introduce suitable state variables, i.e., variables that account for storage. They are typically the variables that appear differentiated in the equations. For the particular model these variables are ω_r, ω_m, I and x. Since ω_m and ω_l are related through an algebraic equation (A.5) one of the variables has to be eliminated. Elimination of ω_m using equations (A.2) and (A.5) gives

$$\frac{d\omega_l}{dt} = \frac{nk_m I}{(J_l + n^2 J_m)} - \frac{1}{J_l} \omega_l - \frac{R_a}{J_l} I - \frac{1}{J_l} \frac{x}{T_l} - \frac{1}{J_l} n k_m \omega_l - \frac{1}{J_l} n k_m \omega_l$$

which is an explicit state space representation. To obtain an analog simulation diagram we assume that the state variables are available as output voltages of the integrators. Voltages representing the derivatives as expressed by equation (2) can then be obtained by multiplication by constants and addition and introduced as inputs to the integrators as shown in Fig. 3. Multiplication by a constant is done by a potentiometer, addition and integration by operational amplifiers with feedback. In practice there are additional complications. Potentiometers can only represent multiplication with numbers that are smaller than one. All variables have to be scaled. In the figure potentiometers are represented by circles, summers by triangles and integrators by a triangle with a rectangle.

Algebraic Loops

Several manual steps were required to transform the equations given in Appendix A to the form (1). These calculations are easy to do in the specific case but they are quite tedious and error prone for more complex systems. The connection to the physical processes are partially lost in the transformations. It is easy to recognize the controller in the analog simulation diagram in Fig. 3, but the gearbox and the inertias are no longer visible. They appear combined in the coefficient C. The reason for this is that analog simulation cannot deal with differential algebraic equations. If it is attempted
to simulate the basic equations in Appendix A directly there will be a loop which only contains algebraic equations. This is caused by the relation (A4). This is not easy to discover without analysing the equations. The phenomenon which is well known in analog simulation is called the algebraic loop problem. One way of dealing with it in analog computing was to introduce a small capacitor in the algebraic loop. This amounts to replacing an algebraic equation with a differential equation that settles quickly. This could give large initial transients but it often worked well.

NUMERICAL INTEGRATION

Numerical solution of differential equation is an essential ingredient of digital simulators.

Ordinary Differential Equations (ODE)

There are many ways to find approximate numerical solutions to an ordinary differential equations such as \((1) \). The methods are based on the idea of replacing the differential equations by a difference equation. Euler's method is based on approximation of the derivative by a first order difference. There are more efficient techniques such as Runge-Kutta and multi-step methods. These methods were well known when digital simulators emerged in the 1960s. This field of numerical mathematics experienced a revival because of the impact of digital computers. Important contributions were given to stability of difference approximations, see Dahlquist (1959) and Henrici (1962). Automatic step length adjustment was another important contribution, see Fehlberg (1964). Systems with both fast and slow modes (stiff systems) posed a particular difficulty for explicit methods. It is necessary to choose a very short step length to have numerical stability, which gives a very slow simulation.

Differential Algebraic Equations (DAE)

The natural models for dynamical systems are differential algebraic equations (DAE), i.e. a mixture of differential and algebraic equations. This is true even for the simple servo in Appendix A. A general form of a DAE is

\[
g(t, x, x') = 0
\]

It is not always possible task to convert such an equation to an ordinary differential equation because the Jacobian \(\partial g / \partial x' \) may not be invertible.

Numerical methods for differential algebraic equations appeared in 1970. The paper Gear (1971) is one of the early publications. Efficient codes came later, see Brenan et al. (1989) and Hairer et al. (1989).

Numerical integration of ODEs and DAEs are very active research fields which continue to have strong impact on modeling and simulation, see Hairer et al. (1987) and Hairer and Wanner (1991). Among the interesting development are improved algorithms, a better structuring of the code where algorithms and error control are separated, see Gustafsson (1993) and Olsson (1996). Algorithms for differential algebraic equations are still not as well developed as algorithms for ordinary differential equations.

THE ANALOG SIMULATION HERITAGE

When digital computers appeared it was natural to explore if they could be used for simulation. The development was triggered by Selfridge (1955) which showed how a digital computer can emulate a differential analyzer. There was a very intense activity, see Brennan and Linebarger (1964) and Tiechrow et al. (1967). By 1967 there were more than 23 different programs available. Typical examples are MIMIC from Wright Patterson [Peterson and Sansom (1965)], DYNASAR [Lucke (1965)] from General Electric, DSL/90 [Syn and Linebarger (1966)] and CSMP [Brennan and Silberberg (1968)] from IBM. One reason for the intense development was that the a problem could be entered in the form of analog computer diagrams and previous working practices could be reused. It seemed easier to change the technology than to change the paradigm.

The CSSL Standard

The CSSL report [Strauss (ed.) (1967)], commissioned by the Simulation Council Inc (SCI), was a major milestone since it unified the concepts and language structures of the available simulation programs.

In CSSL a system can be described in three different ways, as an interconnection of blocks as in MIDAS and DYNASAR, by mathematic expressions as in MIMIC and DSL/90 and by conventional programming construct as in FORTRAN. CSSL defined a set of operators like INTEG which emulates the integrator of the analog computer. Other built-in operators are IMP for breaking algebraic loops and applying an iterative scheme for its solution, DELAY for time delays, HYST for hysteresis. Automatic sorting of the equations to proper order of the calculation is another feature of CSSL that was inherited from MIMIC. The reason was to avoid spurious delays when the inherent parallelism in the modeled devices are mapped on a sequential machine.

The user can define new block types by means of a MACRO definition. A macro has a list of formal parameters. Their appearances in expressions are textually substituted when the macro is invoked. There is a special REDEFINE statement to generate unique names so that each invocation could use its own local variables. However, there was no naming convention to access local variables. The macro feature can be seen as a poor man's class description. It is more powerful than a function in a programming language since it has local storage in built-in operators like INTEG and DELAY and the REDEFINE statement to obtain instance variables. In an object-oriented language such instance variables are typically accessed by dot-notation. Macro handling is done without using information about the textual content of the macro. This can lead to severe errors just like
ACSL

A number of software products were based on the CSSL definition. One example is ACSL from Mitchell and Gauthier Associates, Mitchell and Gauthier (1976) which was the de facto standard for simulation for a long time. ACSL is based on CSSL but certain modifications and many enhancements were done. In particular, the macro language, the set of built-in operators and the set of control statements are considerably stronger than in CSSL. Constructs for combined continuous/discrete modeling were later added. It is thus possible to schedule events when certain variables crosses limits. The definitions were made in such a way that integration routines can accurately find the time of the event by utilizing zero-crossing functions and a root finder. ACSL was implemented as a preprocessor to Fortran. Fortran statements can be part of the model.

To illustrate the style of textual modeling in CSSL and ACSL, we give the following ACSL model of the motor drive.

PROGRAM drive

MACRO motor(T, V, w, Ra, La, km)

MACRO REDEFINE I

I = INTEG((-Ra*I + V - km*w)/La, 0.0)\end{verbatim}

MACRO END

INITIAL

CONSTANT km=1.1616, Ra=0.5, La=0.02
CONSTANT k=1, Ti=1, wr = 1
CONSTANT n=100, Jl=10, Jm=2
J = Jl + Jm*n**2
END ! of initial

DYNAMIC

DERIVATIVE

T = motor(Vs, n*w1, Ra, La, km)
w1 = INTEG(n*T/J, 0.0) ! Load
e = wr - w1 ! Control error
Vs = k*(e + INTEG(e, 0.0)/Ti) ! PI controller
END ! of derivative

TERMT(t .ge. 1) ! Terminate after 1 second
END ! of dynamic
END ! of program

A macro has been defined for the motor. All characters after ! are considered as comments by ACSL. Notice that due to the problem of constraints in the shaft (algebraic loop) it is necessary to make the same manual reduction of the equations as was done for pure analog simulation. The actual formulas for the combined inertia J is calculated in an INITIAL section.

Simnon

A different approach than using textual macros for structuring was taken in the program Simnon which was developed at Lund University starting 1972 [Elmqvist (1975)] and ported to PC in 1985 [Elmqvist et al. (1985)]. Simnon was part of a research program in computer aided control engineering, see Åström (1983).

Simnon uses continuous systems, discrete systems and connecting systems. Continuous and discrete systems are described in state space form. Variables are named locally in each system with names categorized as input, output and state. The functions which give the rate of change of states, the next state function, and the output are specified by assignment statements. The connecting system is a list of assignments of the form u[sys2] = y[sys1] that tells how the inputs are defined from outputs. The notation u[sys2] means the same as the dot-notation sys2.u. A restriction is that only two level hierarchies are supported. Simnon had a nice feature for modeling mixed sampled and continuous systems. Discrete systems where provided with a special variable which tells the next time a discrete system should be executed. This variable can be updated with any expression. This gives a simple way to deal with many different sampling schemes. It was also possible to define systems in Fortran or Pascal. This was however complicated to use.

Simnon was initially developed for interactive simulation on a PDP-15 environment. There was a strong separation between the modeling language and the command language for executing the simulation and for analysing the results. Basic simulation is executed by six command only: compile systems, initialize variables, change parameters, execute simulations, plot results and organize plots. There is an extensive error checking. Simnon uses global sorting of the assignments to find the proper calculation order during compilation. Simnon has its own machine code generator, which gave fast recompilation. Parameters could be changed without recompilation. There is a macro command facility so that several commands can be grouped together to form a new command. This was very useful for documentation.

Graphical Block Diagram Modeling

Graphical representations of the type shown in Fig. 3 were used to represent models in terms of integrators,adders and potentiometers in the early days of analog simulation. Because of the limited input-output facilities of early digital computers it was necessary to revert to textual representations in the digital simulators. Prototype graphical environments were designed in the mid 1970s using a cathode ray tube (CRT) and light pen for drawing block diagrams [van den Bosch and Bruijn (1977)]. However, graphical modeling was not widely used until modern work stations and the PC with raster graphics became generally available.

Boeings simulator EASY5 from 1976 was provided with
The system SPICE [Nagel and Pederson (1973); Nagel (1975)], which was developed for analog modeling of electrical circuits is a typical example. Electrical circuits are formed simply by connecting resistors, capacitors, inductors and transistors. VHDL-AMS [IEEE (1997)] is an extension of the discrete circuit modeling language VHDL for combined continuous and discrete models. VHDL-AMS is a large and rich modeling language targeted mainly at the application domain of electronics hardware.

EMTP (Electro Magnetic Transients Program) [Ele (1989)] and its relatives ATP and EMTDC, are industry standard for electro-magnetic transients in power systems. It was developed in the late 1960s by Dommel at the Bonneville Power Administration. The program PSS/E (Power System Simulator) is a widely used program for simulation of transmission networks which was developed in the mid 1970s.

Mechanical systems
Multi-body systems are used to model 3-dimensional mechanical systems, such as robots, satellites and vehicles. Vectors and matrices are natural elements for modeling. Interfaces to CAD databases are needed to generate models automatically from a CAD topology and to animate the results.

The first tools appeared in the end of the 1970s. DADS was developed at the University of Iowa appeared around 1984. Several commercial tools are now available. ADAMS is a popular software. The German Aerospace Establishment, DLR has a long tradition from Fadyna (1977) and Medyna (1984) to SIMPACK.

An interesting feature is that the code for simulation of multi-body systems use both symbolic and numeric computing.
Energy and process systems

SpeedUp [Sargent and Westerberg (1964); Perkins and Sargent (1982)] from the Centre for Process Systems Engineering, Imperial College in London, is widely used for dynamic simulation in chemical engineering. The same group also developed gPROMS (general Process Modelling System) [Barton and Pantelides (1994)]. SpeedUp and gPROMS exploit numerical DAE solvers and automatic differentiation for analytical Jacobian calculations.

The Modular Modeling System (MMS) is a system for simulation of nuclear and fossil power plants developed by EPRI [Divakaruni (1986)]. It consists of a user interface and modules for ACSL or EASY5. Since ACSL requires the models to be on explicit state space form, there are many approximations to avoid algebraic loops. This make it very difficult to modify existing models and add new ones.

There are several tools, for simulation of heating, ventilation and air conditioning e.g., HVACSIM+ [Clark (1985)] and TRNSYS (1983). These languages are in the spirit of the CSSL languages. To support exchange of models between tools a standard Neutral Model Format (NMF) was proposed to the building and energy systems simulation community in 1989 [Sahlin and Sowell (1989); Sahlin et al. (1996)]. The language is formally controlled by a committee within Am. Soc. for Heating, Refrigerating and Air-Conditioning Engineers. Several independently developed NMF tools and libraries exist.

Summary

Software for specific domains is very easy to use if the problem fits the tool directly. It is however often very difficult to modify the tools and to add new features. Some things that can be learned from the modeling environment is that model libraries are very useful and that the analog computing paradigm is too limited.

PHYSICAL MODELING

A typical procedure for physical modeling is to cut a system into subsystems and to account for the behavior at the interfaces. Each subsystem is modeled by balances of mass, energy and momentum and material equations. The complete model is obtained by combining the descriptions of the subsystems and the interfaces. This approach requires a different paradigm for modeling. A model is considered as a constraint between system variables. This leads naturally to DAE descriptions. The approach is very convenient for building reusable model libraries.

Bond Graphs

Bond Graphs are directed graphs where the subsystems are the nodes and the power flow in the system is shown by the branches, see Karnopp and Rosenberg (1968). The connections are called power bonds and have asso-
a methodology for orienting a model to its physical subsystem. The behavior description in Simula was designed for discrete event simulation with sequential programming with coroutines and methods. This was not suitable for continuous modeling, since the laws of physics are equations. Coupling between objects were in Simula expressed by calling methods in other objects. Physical coupling is typically symmetric and it imposes constraints on the interface variables, like Kirchhoff’s voltage and current laws.

Dymola introduced model classes, which at the time were called model types, and a submodel statement to invoke classes similar to the ref-construct in Simula. Submodels were described by equations. A construct called cut was introduced to name connection mechanisms such as wires, pipes and shafts. It declares variables that were associated with the cut and are constrained when cuts are connected to each other to define the topology. These constructs made it possible to describe models in many different domains like electrical circuits, mechanics, thermo-dynamics, etc. in a uniform way. Such a model description was equivalent to the collection of the equations of each instantiated model class and the formed connection equations, i.e., a DAE.

Symbolic formula manipulation was used extensively to convert the DAE to ODEs. The graph theoretic methods in Tarjan (1972) and Wiberg (1977) were found to be very effective. They were typically designed for sparse linear problems but were applicable to non-linear DAEs since only structural information was utilized. The resulting linear equations were solved symbolically and remaining nonlinear equations numerically.

The parser, the structural analysis and the formula manipulation was originally implemented in Simula. The program was not useful for large problems at the time due to limited memory capacity (64 kwords) on machines like Univac 1108. The largest problem handled was a thermal power plant with 300 equations, i.e., it was not industrially applicable. Cellier used Dymola in modeling classes in the late 1980s and in his modeling book Cellier (1991). Development of Dymola was resumed in 1992 when Elmqvist founded Dynasim AB in Lund and made a commercial version. The major computer architecture and operating systems then supported large linear address space suitable for symbolic computation on large models. Hardware and software had finally caught up with the ideas. In the mean time a few other developments had taken place. They will be discussed below.

Omola and OmSim

By the mid 1980s there had been major developments in hardware, software and numerics that made it worth while to continue the modeling effort that started with Dymola. Work stations and personal computers with powerful graphics were available. Object oriented programming and software had advanced considerably. Numerical algorithms for solving DAEs were available [Brenan et al. (1989); Hairer et al. (1989)]. Powerful computing environments were also available.

A research program in object oriented modeling was initiated at the Department of Automatic Control in Lund. Preliminary work was done on modeling, see Åström and Kreutzer (1986) and interactive graphics Elmqvist and Mattsson (1989). The project soon focused on modeling languages. Omola (Object-oriented modeling language) appeared in late 1988, see Andersson (1989). The first prototypes were written in CommonLisp and KEE. As the language design stabilized it was written in C++, see Mattsson et al. (1993). Models can be decomposed hierarchically with well defined interfaces that describe interaction. All model components are represented as classes. Inheritance and specialization support easy modification. Omola supports behavioral descriptions in terms of DAEs and difference equations.

Omola has primitives for describing discrete events which allows definition of classes to support high level descriptions as finite state machines and Petri nets [Andersson (1994)]. A kernel for model representation based on Omola and an interactive environment, OmSim, was also implemented see Mattsson et al. (1993) and Andersson (1994). The complete environment includes a graphical model editor, consistency analysis, symbolic analysis and manipulation, ODE and DAE solvers and interactive plotting. The software is implemented in C++.

Several applications were made in parallel with the development of Omola. The idea was to explore if the language constructs were suitable for different domains. Applications studied include chemical processes, power generation and power networks, see Nilsson (1993). This work resulted in guidelines for structure and class hierarchy decomposition and organization of model libraries. Issues relating to component composition versus multiple inheritance were also raised. Language extensions were suggested. Typical examples are constructs for system structuring using arrays of components and language elements to define regular connection patterns. It is useful for modeling of a distillation column which consists of a set of trays connected in series. Component arrays are also useful for spatial discretization. Medium and machine decomposition was proposed as method to separate the description of the process media from the processing units. This can be supported by allowing model classes to be parameters.

Modelica

In addition to Dymola and Omola, there are several other languages with similar ideas defined, such as: ASCEND [Piela et al. (1991)], gPROMS, NMF [Sahlin et al. (1996)], ObjectMath [Fritzson et al. (1995)], SIDOPS+ [Breunese and Broenink (1997), Smile [Kloas et al. (1995)], and U.L.M. [Jeandel et al. (1996)]. The situation was thus similar to the mid 1960s when CSSL was defined as a unification of the techniques and ideas of many different simulation programs. An international effort was initiated in September 1996 for the
model MotorDrive
 Motor motor;
 PI controller;
 Gearbox gearbox(n=100);
 Shaft Jl(j=10);
 Tachometer w1;
equation
 connect(controller.out, motor.in);
 connect(motor.flange, gearbox.a);
 connect(gearbox.b, Jl.a);
 connect(Jl.b, w1.a);
 connect(w1.w, controller.in);
end MotorDrive;

Figure 7 A Modelica model of the system in Fig. 1.

purpose of bringing together expertise in object-oriented physical modeling and defining a modern uniform modeling language. The language is called Modelica. Version 1.0 was finished in September 1997.

Modelica is intended for modeling within many application domains such as electrical circuits, multibody systems, drive trains, hydraulics, thermodynamical systems, and chemical processes etc. It supports several formalisms: ordinary differential equations (ODE), differential-algebraic equations (DAE), bond graphs, finite state automata, and Petri nets etc. Modelica is intended to serve as a standard format so that models arising in different domains can be exchanged between tools and users. More information about Modelica can be found in Elmqvist et al. (1998).

Fig. 1 and Fig. 2 are actually Modelica models of the motor drive presented in Dymola. The physical components and their interconnections are shown graphically. Parameters can be set by clicking on the components. The textual Modelica representation is shown in Fig. 7. Modelica has constructs for storing and exchanging graphical information (positions, connection lines, icons). This has, however, been omitted in Fig. 7.

CONCLUSIONS

Simulation is essential for dealing with complex systems. Techniques for modeling and simulation have advanced substantially since the mid 1920s. In this paper we have attempted to capture the historical development. It started with mechanical differential analyzers which were able so solve a few ordinary differential equations. These systems were available only to a small group of researchers. The replacement of mechanics by electronics in the 1950s was a major advance which led to industrialization and a significant increase of the availability of modeling and simulation. Another major advance occurred when the analog computers were replaced by digital computers in the 1960s. It is interesting that only one of the analog computing company made the transition to digital simulators, see Gilbert and Howe (1978). Another major advance happened in the 1990s when personal computers and computer graphics became generally available. It is interesting to observe that ideas change slower than technology. The analog simulation paradigm is still prevailing. It is only in the 1990s that it has been more widely realized that a paradigm shift is needed. This is driven by demands from users to be able to simulate complex multi-domain models and advances in object oriented programming, software for differential algebraic systems, symbolic computing and advanced graphics. The modern approaches build on non-causal modeling with mathematical equations and the use of object-oriented constructs to facilitate reuse of modeling knowledge.

REFERENCES

Nagel, L. (1975): “SPICE2: A computer program to simulate semiconductor circuits.” Memorandum ERL-M520. Electronics Research Laboratory, College of Engineering, University of California, Berkeley, CA, USA.

Nagel, L. and D. O. Pederson (1973): “Simulation program with integrated circuit emphasis (SPICE).” Memorandum ERL-M382. Electronics Research Laboratory, College of Engineering, University of California, Berkeley, CA, USA.

APPENDIX A — Equations for the motor drive

The equations for the motor drive shown in Fig. 1 are given below.

The load is modeled as a simple rotating inertia. Let \(\omega_l \) be the angular velocity of the load, \(J_l \) be the moment of inertia of the load and \(T_g \) the torque on the load from the gear box. The equation of motion of the load then becomes

\[
J_l \frac{d\omega_l}{dt} = T_g \quad (A.1)
\]

The electric motor is modeled as shown in Fig. 2. Let \(\omega_m \) be the angular velocity of the motor, \(J_m \) its moment of inertia, \(k_m \) the torque constant, \(I \) the rotor current, and \(T_m \) the torque exerted on the motor axis by the gear box. The equation of motion of the motor rotor then becomes

\[
J_m \frac{d\omega_m}{dt} = k_m I - T_m \quad (A.2)
\]

The electrical properties of the rotor can be characterized by the rotor resistance \(R_a \) and inductance \(L_a \). If \(V_s \) is the voltage applied to the rotor winding Kirchhoff’s law for the motor rotor becomes.

\[
L_a \frac{dl}{dt} + R_a I = V_s - k_m \omega_m \quad (A.3)
\]

The gearbox has the gear ratio, \(n \). Neglecting the moment of inertia of the gears the gearbox can be modeled by

\[
\omega_m = n \omega_l \quad (A.4)
\]

\[
T_g = n T_m \quad (A.5)
\]

The controller is assumed to be a PI controller. Let \(\omega_r \) be the set point of the controller. The power amplifier and the controller can then be modeled by

\[
V_s = k (\omega_r - \omega_l + \frac{1}{T_i} x) \quad (A.6)
\]

\[
\frac{dx}{dt} = \omega_r - \omega_l \quad (A.7)
\]

where \(k \) is the gain of the controller and the power amplifier and \(T_i \) is the integration time of the controller.

Summary

The model of the system is described by eight variables \((\omega_l, \omega_m, \omega_r, T_m, T_g, I, V_s, \text{and } x)\), eight parameters \((J_l, J_m, k_m, n, L_a, R_a, k, \text{and } T_i)\), four ordinary differential equations and three algebraic equations. For a typical experiment, we need also to specify the set point \(\omega_r(t) \).